1,363 research outputs found

    Critical conditions for the wetting of soils

    Get PDF
    The wettability of soil is of great importance for plants and soil biota and in determining whether flooding and soil erosion will occur. The analysis used in common measurements of soil hydrophobicity makes the assumption that water always enters soils if the average contact angle between the soil and water is 90 degrees or lower; these tests have been used for decades. The authors show theoretically and experimentally that water cannot enter many soils unless the contact angle is considerably lower than this, down to approximately 50 degrees. This difference generates serious errors in determining and modeling soil wetting behavior

    Distilling the Real Cost of Production Garbage Collectors

    Get PDF
    Abridged abstract: despite the long history of garbage collection (GC) and its prevalence in modern programming languages, there is surprisingly little clarity about its true cost. Without understanding their cost, crucial tradeoffs made by garbage collectors (GCs) go unnoticed. This can lead to misguided design constraints and evaluation criteria used by GC researchers and users, hindering the development of high-performance, low-cost GCs. In this paper, we develop a methodology that allows us to empirically estimate the cost of GC for any given set of metrics. By distilling out the explicitly identifiable GC cost, we estimate the intrinsic application execution cost using different GCs. The minimum distilled cost forms a baseline. Subtracting this baseline from the total execution costs, we can then place an empirical lower bound on the absolute costs of different GCs. Using this methodology, we study five production GCs in OpenJDK 17, a high-performance Java runtime. We measure the cost of these collectors, and expose their respective key performance tradeoffs. We find that with a modestly sized heap, production GCs incur substantial overheads across a diverse suite of modern benchmarks, spending at least 7-82% more wall-clock time and 6-92% more CPU cycles relative to the baseline cost. We show that these costs can be masked by concurrency and generous provisioning of memory/compute. In addition, we find that newer low-pause GCs are significantly more expensive than older GCs, and, surprisingly, sometimes deliver worse application latency than stop-the-world GCs. Our findings reaffirm that GC is by no means a solved problem and that a low-cost, low-latency GC remains elusive. We recommend adopting the distillation methodology together with a wider range of cost metrics for future GC evaluations.Comment: Camera-ready versio

    Search full text options here 2 of 4 KMT-2021-BLG-0912Lb: a microlensing super Earth around a K-type star

    Get PDF
    Aims. The light curve of the microlensing event KMT-2021-BLG-0912 exhibits a very short anomaly relative to a single-lens single-source form. We investigate the light curve for the purpose of identifying the origin of the anomaly. Methods. We model the light curve under various interpretations. From this, we find four solutions, in which three solutions are found under the assumption that the lens is composed of two masses (2L1S models), and the other solution is found under the assumption that the source is comprised of binary stars (1L2S model). The 1L2S model is ruled out based on the contradiction that the faint source companion is bigger than its primary, and one of the 2L1S solutions is excluded from the combination of the poorer fit, blending constraint, and lower overall probability, leaving two surviving solutions with the planet/host mass ratios of q similar to 2.8 x 10(-5) and similar to 1.1 x 10(-5). A subtle central deviation supports the possibility of a tertiary lens component, either a binary companion to the host with a very large or small separation, or a second planet lying near the Einstein ring, but it is difficult to claim a secure detection due to the marginal improvement of the fit, lack of consistency among different data sets, and difficulty in uniquely specifying the nature of the tertiary component. Results. With the observables of the event, it is estimated that the masses of the planet and host are similar to(6.9 M-circle plus, 0.75 M-circle dot) according to one solution and similar to(2.8 M-circle plus, 0.80 M-circle dot) according to the other, indicating that the planet is a super Earth around a K-type star, regardless of the solution. The fact that 16 (including the one reported in this work) out of 19 microlensing planets with M less than or similar to 10 M-circle plus were detected during the last 6 yr nicely demonstrates the importance of high-cadence global surveys in detecting very low-mass planets
    • …
    corecore